ICP- CVD
Inductively Coupled Plasma - Chemical Vapor Deposition

<table>
<thead>
<tr>
<th>Tool Identifier</th>
<th>Plasma lab System 100 ICP180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document version:6.0</td>
<td>Date:9th June 2014</td>
</tr>
</tbody>
</table>

Inductively Coupled Plasma Enhanced Chemical Vapor Deposition Tool
<table>
<thead>
<tr>
<th>Name of the Equipment</th>
<th>Inductively coupled plasma CVD (ICPCVD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>semi clean b</td>
</tr>
<tr>
<td>Operator</td>
<td>Hitesh Kamble</td>
</tr>
<tr>
<td>System Owner</td>
<td>Neha Raorane</td>
</tr>
<tr>
<td></td>
<td>neharaorane.171@gmail.com</td>
</tr>
<tr>
<td></td>
<td>Aakash Diwan</td>
</tr>
<tr>
<td></td>
<td>akki.thedestiny@gmail.com</td>
</tr>
<tr>
<td>Short Name</td>
<td>ICPCVD</td>
</tr>
<tr>
<td>Make</td>
<td>Oxford Instruments</td>
</tr>
<tr>
<td>Model</td>
<td>Plasma lab system100</td>
</tr>
<tr>
<td>Serial Number</td>
<td>94-814852</td>
</tr>
<tr>
<td>FootPrint</td>
<td>Length 1.93 mtr , Breadth 2.28 mtr,</td>
</tr>
<tr>
<td></td>
<td>Height 1.57</td>
</tr>
<tr>
<td>Installation Date</td>
<td>08/01/2008</td>
</tr>
<tr>
<td>Equipment Type</td>
<td>Deposition, Growth and Annealing systems</td>
</tr>
<tr>
<td>Location</td>
<td>Nano Lab</td>
</tr>
<tr>
<td>Local Dealer</td>
<td>Aimil Ltd</td>
</tr>
<tr>
<td></td>
<td>Amol Gawade Sr. Service Engineer Aimil</td>
</tr>
<tr>
<td></td>
<td>Ltd., Mumbai Naimex House 11th Floor 'B'</td>
</tr>
<tr>
<td></td>
<td>Wing, Bsel Tech Park Sector 30A, Opp.</td>
</tr>
<tr>
<td></td>
<td>Vashi Rl. St. Navi Mumbai - 400 705 India</td>
</tr>
<tr>
<td></td>
<td>Tel. : +91 22 39182698 +91 22 39183554/55</td>
</tr>
<tr>
<td></td>
<td>Board line Mobile : +919920271186 Fax :</td>
</tr>
<tr>
<td></td>
<td>+91 22 39183562</td>
</tr>
<tr>
<td>Actual Dealer</td>
<td>Oxford instruments</td>
</tr>
<tr>
<td></td>
<td>thomas.miller@oxinst.com</td>
</tr>
<tr>
<td>Tool Facilities</td>
<td>Nitrogen, Argon, Silane, CF4, N2O,</td>
</tr>
<tr>
<td>Requirements</td>
<td>Ammonia, Hydrogen, Water connection</td>
</tr>
<tr>
<td>Lab Phone No</td>
<td>4411</td>
</tr>
<tr>
<td>Substrate allowed</td>
<td>Si/Ge/GaN/Quartz/GaAs</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Substrate Dimension</td>
<td>Pieces to 4 inch wafer</td>
</tr>
<tr>
<td>Material allowed</td>
<td>Si,TiN,ZnO, GaN,GaAs,Al</td>
</tr>
<tr>
<td>Chemical allowed</td>
<td>IPA for cleaning</td>
</tr>
<tr>
<td>Gases allowed</td>
<td>GN2,PN2,Ar,N2O,SiH4,NH3,H2,He,CF4/O2 for cleaning</td>
</tr>
<tr>
<td>Contamination remarks</td>
<td>Gold contaminated wafers not allowed.</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>5</td>
</tr>
<tr>
<td>People list</td>
<td>6</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Specifications</td>
<td>8</td>
</tr>
<tr>
<td>Operating Procedure</td>
<td>8</td>
</tr>
<tr>
<td>Precautions</td>
<td>8</td>
</tr>
<tr>
<td>Switch On Procedure</td>
<td>9</td>
</tr>
<tr>
<td>To increase substrate temperature</td>
<td>10</td>
</tr>
<tr>
<td>Procedure for deposition - Automatic Process Run</td>
<td>10</td>
</tr>
<tr>
<td>Evacuation of gas lines</td>
<td>12</td>
</tr>
<tr>
<td>Procedure for shutting down the system in normal course</td>
<td>12</td>
</tr>
<tr>
<td>Procedure for shutting down the system in case of power failure</td>
<td>13</td>
</tr>
<tr>
<td>Procedure for shutting down the system in case of an emergency</td>
<td>13</td>
</tr>
<tr>
<td>Changing transmission disc and wafer clamp</td>
<td>13</td>
</tr>
<tr>
<td>Chamber Cleaning Procedure – Semi Automatic Process- CF₄/O₂ (80:20) Plasma clean</td>
<td>14</td>
</tr>
<tr>
<td>Process Gas Lines Leak Testing</td>
<td>15</td>
</tr>
<tr>
<td>Clean Gas Line Leak Testing...CF₄/O₂</td>
<td>15</td>
</tr>
<tr>
<td>Check List before Leaving the System</td>
<td>15</td>
</tr>
<tr>
<td>Characterization</td>
<td>18</td>
</tr>
<tr>
<td>Trouble shooting</td>
<td>19</td>
</tr>
<tr>
<td>Maintenance</td>
<td>20</td>
</tr>
<tr>
<td>Contact Details</td>
<td>20</td>
</tr>
<tr>
<td>References</td>
<td>20</td>
</tr>
</tbody>
</table>
Warning

- **After checking if the following conditions are satisfied only, one should enter the lab to start the system:**
 - The 3 water lines – Turbo: 1lpm, RF Generator: 8lpm, ICP/AMU: 2lpm are fine
 - The 2 exhausts are switched ON- Leak exhaust and Turbo exhaust
 - High purity Nitrogen (PN2) cylinder is at 4bar
 - GN2, Commercial Nitrogen Plant is working and giving a minimum pressure of 6bar
 - The AHU in the lab is working
 - There is no condensation of water along water lines going into the system.
- Please don't open the process chamber under any circumstances without consulting the system owner.
- **The authorized users are allowed to carry out only the ‘Automatic Process Run’ on their own.**
- Whenever the transmission disc or wafer clamp needs to be changed, please consult the system owner.
- Make sure that the processes you want to run are contamination protocol compliant.
- Refer to the **people list** in case of any doubt or emergency and consult the relevant person(s).
People List

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Email ID</th>
<th>Mobile no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Owner</td>
<td>Aakash Diwan</td>
<td>akki.thedestiny@gmail.com</td>
<td>9167474172</td>
</tr>
<tr>
<td>Authorised User</td>
<td>M. N. Rao</td>
<td>mnraomraomnrao@gmail.com</td>
<td>9769427713</td>
</tr>
<tr>
<td>Authorised User</td>
<td>Pradeep Nyaupane</td>
<td>pradeeprn@ee.iitb.ac.in</td>
<td>9920190630</td>
</tr>
<tr>
<td>Authorised User</td>
<td>Hemant Kumar Singh</td>
<td>hemantphysics@yahoo.co.in</td>
<td>9820722537</td>
</tr>
<tr>
<td>Authorised User</td>
<td>Jim Joseph John</td>
<td>iamjimjohn@gmail.com</td>
<td>9769511689</td>
</tr>
<tr>
<td>Authorised User</td>
<td>Tarkeshwar Patil</td>
<td>tarkesh7@gmail.com</td>
<td>9221168117</td>
</tr>
<tr>
<td>Authorised User</td>
<td>Karthick Murukesan</td>
<td>karthick31388@gmail.com</td>
<td>9920732851</td>
</tr>
<tr>
<td>Authorised User</td>
<td>Laxmisundar Murthy</td>
<td>laxmisundar@ee.iitb.ac.in</td>
<td>8097347476</td>
</tr>
<tr>
<td>Authorised User</td>
<td>Sandeep S S</td>
<td>sandeep.gec@gmail.com</td>
<td>9930127210</td>
</tr>
<tr>
<td>People authorised to handle gas cylinders</td>
<td>Pradeep Nyaupane/</td>
<td>pradeeprn@ee.iitb.ac.in</td>
<td>9920190630</td>
</tr>
<tr>
<td></td>
<td>Sandeep Mane</td>
<td>sandeepm@ee.iitb.ac.in</td>
<td>9867634828</td>
</tr>
<tr>
<td>Contamination Clearance</td>
<td>Prof. Anil Kottantharayil</td>
<td>anilik@ee.iitb.ac.in</td>
<td>9833619152</td>
</tr>
<tr>
<td>Lab Manager</td>
<td>Rajendra Prasad</td>
<td>vanaparthy@ee.iitb.ac.in</td>
<td></td>
</tr>
<tr>
<td>Aimil Ltd</td>
<td>Mr. Aniruddha Bapat</td>
<td>ambapat@aimil.com</td>
<td>9930359715</td>
</tr>
<tr>
<td>Oxford Instruments Plasma Technology (OIPT)</td>
<td>OIPT Engineer; Mr. Dave Exon/Mr. Ian Mays</td>
<td>ptsupport@oxinst.com www.oxfordinstruments.com</td>
<td>00441934837070/00441934837000</td>
</tr>
</tbody>
</table>
Introduction

Plasma Enhanced Chemical Vapor Deposition (PECVD) is a process to deposit thin films from a vapor phase to a solid state on a substrate. There are chemical reactions involved in the process which occur after creation of plasma of the reacting gases or vapors.

Plasma

- Ionized gas
- High free electron content
- Unique state of matter

Inductively coupled plasma (ICP)
Plasma can be generated by two ways: DC discharge and RF discharge. DC discharge is not useful in depositing insulated materials because plasma created gets extinguished as soon as a layer of insulator is deposited. Plasma driven from AC signal can solve this problem.

When a time varying electric current is passed through a coil, it creates time varying magnetic field around it, which in turn induces azimuthal currents in the rarified gas leading to break down and formation of plasma. Thus plasma is generated by electromagnetic induction. The RF coil around the ICP chamber is operated at 13.56MHz and with a maximum power of 1KW.

Advantages of ICP-CVD over conventional PECVD

- High density plasma (higher than capacitively coupled systems)
- Low deposition pressures
- Low operation temperatures
- Lower chances of cracking deposited layers
- Good dielectric properties of deposited layers
- Good step coverage (by deposition + etch process)

Disadvantages of ICP-CVD

- Toxic byproducts
- High cost of equipment

Applications of thin films deposited by ICPCVD

- Passivation layer for packing of devices
- Solar cells, optical fibres – Amorphous silicon and anti réflective coating
- Antireflection and antiscratch layers in optics
- Interlayer dielectric
Helium gas - Some pressure is applied to the back of wafers to provide good thermal contact between chuck and wafer. All process gases pass through a transmission disc and Silane is introduced through a gas distribution ring before entering the Process Chamber. [1]

Chemical reactions for the Silicon dioxide and Silicon nitride depositions:

\[
\begin{align*}
\text{SiH}_4 + 2 \text{N}_2\text{O} & \rightarrow \text{SiO}_2 + 2 \text{H}_2 + 2 \text{N}_2 \\
3 \text{SiH}_4 + 2 \text{N}_2 & \rightarrow \text{Si}_3\text{N}_4 + 6 \text{H}_2
\end{align*}
\]
RF current through the coil generates the RF magnetic flux along the axis of the cylinder.

At the same time the RF magnetic flux induces a RF electric field.

Induced E field accelerates the electrons.

Inductively Coupled coil (connected to 13.56MHz generator)

The accelerated electrons produce high density plasma.

Fig. 2. Plasma Strike [2]
Specifications

- **Substrate**: Si, GaN, GaAs, quartz, glass, other wafers (subject to contamination clearance, presently given by Prof. Anil Kottantharayil).
- **Substrate size**: 2", 4", 8" wafers and small pieces.
- **Types of depositions**: Silicon nitride, Silicon dioxide, Silicon oxynitride, Amorphous Silicon.
- **Vacuum attained**: Load lock chamber ~ 10^{-3} Torr; Process chamber ~ 10^{-7} to 10^{-9} Torr.
- **Temperature of substrate**: room temperature to 350degC.
- **ICP power**: 3KW (maximum)
- **Substrate bias power**: 300W (maximum)
- **Gases presently connected to system**: Silane, Nitrogen, Ammonia, Nitrous oxide, Argon, Helium, CF4/O2 (clean gas).

Operating Procedure

Precautions

- **The system can be operated by authorized users only.** The names of the authorized users can be found in the **people list**.
- **All the gas cylinders must be open to 20~30psi, Helium gas to be open to 15psi, SiH4 to be open to 12psi.** **Gas cylinders to be operated only by lab staff trained in handling specialty gases.** Please check the **people list** for the names.
- **Rota meter reading should read between 4.5 and 7slpm**: adjustment can be done only after the System starts some procedure or the other. It displays nitrogen flow for purging rotary pumps.
- **Silane gas is connected to Furnaces and ICP-CVD System with a T-connection in the gas cabinet located in the service corridor.** Care must be taken while opening the cylinder, i.e. **the other line to Furnaces should be closed**.
- **Coordination with RTP, ICPRIE users** is a must as all 3 systems share the same gas lines of Ar, N2. Also, RTP uses high power, hence deposition must not be made when RTP is ON, i.e., **system can be ON but the RF generators must not be ON**.
SWITCH ON Procedure

- Start the three water lines
 - Turbo: 1 lpm RF Generator: 8 lpm ICP/AMU: 2 lpm
- PN2: 4 bar, High purity nitrogen used as a precursor gas, and to purge turbo molecular pump, process chamber, load lock chamber. We have 2 MFCs for PN2. MFC rating for purging is 100 sccm; MFC rating for process gas is 50 sccm.
- GN2: 6 bar, Commercial grade nitrogen used for operating solenoid valves and purging rotary pumps.
- Check if Process Chamber leak Exhaust and Turbo Exhaust are ON.
- Switch ON the mains of the system. Turn the green button of the System ON.
- Open valves for PN2, GN2, and Helium inside the lab.
- Turn ON the PC.
- Choose the software PC2000.
- We get a display as
 - Name OPT Password *******
- Click OK Is load lock empty OK.........Sure OK
- Go to System........Service........
- To activate both the Rotary pumps, click on the schematic for pumps. When a yellow lining appears around the pumps, we have control over them. The pumps will start working.
- Go to System.........Service.........Exit Service........
- We get a display: Danger, Machine is about to reset, Stand clear....This means the machine will reset to home positionclick on OK.
- We are in the Pump Control page now.
- Wait for about 20 min., for warming up of the pumps.
- Click on for both chambers.
- We get a display....Enter Wafer ID...Cancel if there is no wafer/give ID otherwise, and then click on OK.
- Wait for a few minutes, Turbo pump starts, initially...accelerates, after ~6 minutes it shows... At speed. This means the Turbo is at its maximum speed of 34000 rpm. And we need to wait for the Process Chamber to reach the required vacuum ~10^-7 Torr, Load lock chamber at a vacuum 10^-3 Torr.
- When both the chambers are ready, green arrows appear on both the chambers.
- Now the system is ready for all processes.
To increase substrate temperature

- For depositions beyond 300degC, wafer clamp must be removed. At 300degC, wafer clamp need not be removed.
- For depositions temperatures higher temperatures above 100degC, please use heat resistant gloves.
- Go to...Process...Chamber1.
- Give a relevant time to STEP TIME. This time does not signify ramping time for increase in temperature. This time is the process time that starts countdown after the electrode reaches the desired temperature.
- Feed the temperature parameter in CRYO.
- Please increase the temperature in steady steps and also take care of the overshooting of temperature. To avoid overshooting, increase the temperature in smaller steps as you get closer to the required temperature.
- For example, if the required temperature is 250degC. When we start at room temperature, say, 25degC, we increase temperature in steps of 50 degrees initially. When we reach 225degC, we increase temperature in steps of 5 degrees.
- All other parameters in this page must be zero.

Procedure for Deposition – Automatic Process Run

- Check the log book, if the thickness deposited since last cleaning exceeds 2um or if you are depositing a different film run the cleaning recipe.
- Go to....System....Pumping... for Load lock Chamber.
- After Load lock Chamber reaches atmospheric pressure, the Load lock Chamber lid can be opened.
- Load the appropriate carrier inside the chamber and place the sample on it. A list of carriers used for different kinds of substrates is given in the table below. Utmost care must be taken to not drop the sample inside the Load Lock Chamber.
- Close the lid of the Load lock Chamber.
- A Dialogue Box appears for Wafer ID. Enter your wafer ID.
- After the Load lock Chamber attains 10^3Torr, green arrows appear on the Load lock Chamber.
- Select Process, choose Recipe option.
- Open the valves for all the required process gases inside the lab.
- Drag the relevant recipe using the 'mouse'.
• Ask the facility people to switch ON the scrubber just before introducing toxic gases. After process is finished inform facilities for switching OFF scrubber.
• Run the recipe. It can be Edited according to the requirements. **Helium pressure is always set at 10Torr.** The Helium flow is taken by the system according to the requirement. **We do not set the Helium flow rate.**
• After deposition, a yellow alert saying **Process Complete** is displayed....**Accept.**
• Automatically the wafer moves from Process Chamber to Load lock Chamber.
• For Load lock Chamber.
• Open Load lock Chamber and remove the sample.

<table>
<thead>
<tr>
<th>Description of the substrate</th>
<th>Description of the carrier to be used</th>
<th>Treatment of carrier before processing batch/sample</th>
<th>Treatment of carrier after processing the batch/sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon wafers (2", 4" or 8" diameter) subjected to CMOS processing and not contaminated with metals and photo resist.</td>
<td>8" Pocketed Silicon Carrier1.</td>
<td>Etching in 2% HF.</td>
<td>Etching in 2% HF.</td>
</tr>
<tr>
<td>Silicon wafers contaminated with Na, K or any other metallic contaminants. E. g.: Solar cells wafers processed in a typical cell manufacturing facility</td>
<td>Al carrier1 designated for the purpose</td>
<td>Carrier is plasma cleaned in the chamber using ‘chamber cleaning’ procedure.</td>
<td>Carrier is plasma cleaned in the chamber using ‘chamber cleaning’ procedure.</td>
</tr>
<tr>
<td>GaAs or other III-V semiconductor samples</td>
<td>Al carrier2 designated for the purpose</td>
<td>Carrier is plasma cleaned in the chamber using ‘chamber cleaning’ procedure.</td>
<td>Carrier is plasma cleaned in the chamber using ‘chamber cleaning’ procedure.</td>
</tr>
<tr>
<td>Other samples</td>
<td>8" Pocketed Silicon Carrier2</td>
<td>Etching in 2% HF</td>
<td>Etching in 2% HF</td>
</tr>
</tbody>
</table>
Evacuation of gas lines

Evacuation to be done up to the valves inside the lab at the end of the day.
Evacuation to be done up to the cylinder at the end of the week, i.e., Friday.

- Close the gas cylinders and keep the regulators open or only the valves of the gases inside the lab as the case may be.
- At a time, one gas line is to be evacuated.
- Go to Process...........Chamber1.
- All parameters on this page must be zero. **PUMP TO PRESSURE...must not be ticked.**
- **CRYO.....**feed the temperature of the electrode at that point of time.
- Feed 15 min **Step Time** value for non toxic gas and 30 min for toxic.
- Give maximum possible suitable value for the MFC which is to be evacuated........**Start.**
- Watch the flow rate, it must show 0sccm.
- If you do not get this flow rate, start the evacuation step again.
- This will evacuate the gas lines.
- MFC Limit/Range :

Procedure for SHUTting DOWN the system in normal course

- Shutting down of the System must be done only after all the gas lines have been evacuated according to **Evacuation of gas lines** procedure.
- Go to **Pumping page**......click on ‘STOP for all automatic processes’ which is on right hand side top corner of the page.
- The Turbo molecular pump will start ‘breaking’. A window opens asking ‘**Do you want to stop all processes?**’... Click on ‘Yes’.
- Turbo starts decelerating, and finally comes to a halt showing 0rpm. **Till the turbo reaches 0rpm, please do not switch OFF the mains of the system.**
- Go to SystemExitAre You Sure......Yes.
- **Switch OFF** using red button on System. The rotary pumps stop.
- **Switch OFF** the mains for the **PC and the system.**
Procedure for SHUTting DOWN the system in case of power failure

- While the process is on, if there is a power failure, we have about 20min. time to shut down the System.
- If you are in the middle of a process, you can click on STOP on the recipe page.
- Immediately, a display will be seen asking if the process is to be Aborted, Accept and the sample will come to the Process Chamber automatically.
- **SHUT DOWN** the system according to the given procedure.
- After power returns, start the system according to normal **SWITCH ON** procedure.

Procedure for SHUTting DOWN the system in case of an emergency

- If one needs to **SHUT DOWN** the system on an emergency, say, while a process is going on, it can be done by pressing on the **RED EMERGENCY BUTTON** located on the right side of the tool. When this is done all automatic processes will stop immediately and all solenoid valves will close so that no gases will enter the Process Chamber.
- Switch off the mains.
- After the situation is under control, **SWITCH ON** the system according to the normal procedure. If the ‘arm’ is in the Process Chamber, wait, it will come back automatically into the Load lock Chamber.
- After that, one can proceed with depositions.

Changing Transmission Disc and Wafer Clamp

- Go to....System....Pumping....for the Process Chamber it takes ~20min.
- **Venting Time Left** is displayed on the screen. When it shows zero seconds, the Chamber can be opened.
- To change the disc and wafer clamp proper care must be taken. At least 2 people are needed to perform this operation.
- **Do not drop screw/screw driver in the chamber. This will damage the wafer clamp. Locating the screw will also be a problem.**
- After this, close the Process Chamber,

- Preferably done at room temperature, as during cleaning procedure the temperature keeps increasing.
- **A DUMMY WAFER MUST BE USED.** This protects the lower electrode. Otherwise there could be sputtering of the electrode.
- After deposition of every 2 microns, **extensive cleaning has to be done.**
- When different kinds of depositions are done, **cleaning is essential.**
- **Cleaning should be done till the color of plasma changes to white.** If the color doesn’t change in given time run the recipe again.
- Whenever the Process Chamber is opened, **cleaning is to be done.**
- Go to …..System……Pumping...... for Load lock chamber place dummy wafer (Wait till the required vacuum 10^{-3} Torr is attained).
- **Click on wafer,** we move to the Robot Control page now automatically. **Click on destination,** i.e., Process Chamber. Wafer gets transferred to Process Chamber……Go to Process…..Recipe…..Load CLEAN CHAMBER……Edit if needed….Run.
- A dialogue box, WARNING…..There is a wafer in the process chamber, do you wish to continue…..appears, click on YES.
- After plasma cleaning is done, **click on wafer** which is in Process Chamber, **click on destination,** i.e., Load lock chamber...wafer gets transferred to the Load lock Chamber.
- Go to....System......Pumping.......for Load lock Chamber
- Open the Load lock Chamber after it reaches atmospheric pressure. Remove the dummy wafer.

Recipe for Cleaning Chamber

STEP1
- Set Pressure......25mTorr MFC for CF4/O2......150sccm
- CRYO........Temp of electrode at that point of time. Time......25min.
- RF100W ICPRF......1500W
STEP2
- Set Pressure......20mTorr MFC for CF4/O2.......100sccm
- CRYO...........Temp of electrode at that point of time. Time.......20min.
- RF.......100W ICRF...........1500W

Process Gas Lines Leak Testing

This must be carried out if there is a long gap of not using the system or if there is a doubt of any leakage of the gas lines.

- Switch **ON** the System according to the **SWITCH ON** procedure.
- After the green arrows appear on both the chambers, go to
- **Process**.......**Chamber1**.......**Leak Detection**.
- On this page, suitable parameters for **Step Time**, Log Interval, have to be fed. All other parameters must be zero. Pump to Time is to be **ticked**.
- Click on **Mass Flow Calibration**, all MFCs will be displayed.
- Choose one gas line at a time. Close the respective valve for the gas line. Feed the value for the MFC....START.
- Depending on the time we have set for **Pump to Time**, the line will be evacuated. After that we get a graphical display of the leak rate.
- The leak testing will go on till the given **Step Time** is completed.
- Leak rate must not exceed **1mTorr/min**. If it does, **please contact the system owner immediately**.

Clean Gas Line Leak Testing...CF4/O2

- Go to**System**.....**Process**......**Recipe**.....**Clean**.....**Load**......**Clean MFC Test**.
- MFC value for CF4/O2 must be given as 300sccm.......**Run**.
- Leak rate must not exceed **1mTorr/min**. If it does, **please contact system owner immediately**.
- Watch the flow rate, it must show 0sccm.
- If you do not get this flow rate, start the evacuation step again.
- This will evacuate the gas lines.

Check List before Leaving the System
- All gas lines evacuated up to the valves inside the lab everyday and up to the cylinder at the end of the week.
- PN2, GN2 and all process gas cylinders are closed. **Check if someone else in the lab is using the common cylinders for their systems before closing.**
- Turn OFF the water lines.
- Switch OFF the mains for the System and PC.
- Check if the log book has been updated. Check if the gas cabinet sheet is updated.
- Keep the surroundings clean.

Characterization

- **It is mandatory for all users to do Ellipsometry immediately after deposition and enter the actual thickness in the ICPCVD log book along with the relevant process parameters.**
Trouble shooting

- Whenever plasma doesn't strike, change the chamber pressure parameter and try.
- Plasma may not strike if the chamber pressure is less than 20mTorr sometimes. Use the Low Pressure Strike option. Typical values are 25,20,8, corresponding to Pressure, DC bias, ramp down time (in seconds) of pressure respectively. This means that to start with the chamber pressure will be 25mTorr to help in striking the plasma, there will be a bias of 20volts given to the lower electrode, and in 8seconds the pressure will ramp down to the desired chamber pressure according to the recipe.
- Whenever reflected power is high, try again changing chamber pressure OR the recipe can also be run by clicking on HOLD on the Recipe page. This means the automatic matching unit (AMU) chooses the last best position for plasma strike.
- Whenever plasma is flickering, click on 'manual', give appropriate values for capacitor positions and click on 'START' in the recipe page during deposition only.
- If still there is flickering, give required value to APC valve position in degrees, click on 'Position', and click on 'START' on the recipe page.
- If points 4 and 5 do not work within a few seconds, recipe gets ‘Aborted’ and wafer is out of the chamber.
- If there is a wafer inside the system, but for some reason the wafer is not being recognized by the software or the vice-versa, there is a way to include/exclude the wafer. Go to.... System ...Service....Click on the location (Load lock or Process Chamber) where the wafer is supposed to be,.....we get on to the ROBOT CONTROL page which shows a dialogue box.....Add/Kill wafer. The appropriate option can be chosen.....Exit Service.
Maintenance

- Load lock chamber to be wiped with IPA
- Process Chamber to be **only wiped dry with lint free cloth.**

Contact Details

- Local Engineer; A.M.Bapat, "A M Bapat" <ambapat@aimil.com>
 Tel.no. 9930359715
- Helpdesk; UK-Bristol Customer Support: ptsupport@oxinst.com
 Tel.no: 00441934837000;
- Plasma Technology, North End, Yatton, Bristol BS49 4AP UK
 www.oxford-instruments.com
- Process Engineer, Mr. Dave Exon: **HOTLINE Tel.no. ; 00441934837070**
 Engineers available 8am to 8pm (UK Time)

REFERENCES

 Nanoelectronics centre, Department of electronics and electrical engineering,
 Glasgow Univ., UK OIPT, Bristol, UK - ISPC 16